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Abstract. Resolutions of the identity in terms of contour integrals that invobié(1, 1)
coherent states and their ‘complementary states’, are derived. The complementary states are
auxiliary states that help in the formulation of these resolutions of the identity. Since the
SU(1, 1) coherent states are normalizable inside the unit disc and the complementary states are
normalizable outside the unit disc, enlargements of the Hilbert space are considered which
allow the construction of resolutions of the identity in terms of contour integrals in rings
1— € < |z] <1+ €. Several examples of our formalism are presented.

1. Introduction

Coherent states were first introduced for the Heisenberg—Weyl group and play an important
role in many branches of physics [1]. A modern definition of coherent states is to consider
displaced vacuum states

la) = D(a, a®)|0) D(a,a™) = exp(ozaT — ot*a) [a,a'l=1 (1)

where D(«, o*) is the displacement operator. This definition can easily be generalized to
other Lie groups, for example th&lU (2) and SU (1, 1) groups. SU (1, 1) coherent states
in particular which are of interest to us here, have been studied extensively both from a
mathematical (e.g., [2-7]), but also from a more applied point of view in connection with
parametric amplifiers [8].

An important property of coherent states is the resolution of the identity which for the
coherent states of the Heisenberg—Weyl group is

2

d
f du(@) ) (@l =1 du@) = —. )

It is known that the full set of coherent states (associated with any group) is highly
overcomplete, in the sense that there are much smaller subsets which are also overcomplete.
In order to exploit these smaller subsets practically we need to find resolutions of the identity
in terms of them. In practice this is not easy, and then even weaker structures, like for
example the concept of frames, are desirable.
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In this spirit, resolutions of the identity in terms of coherent states on a line were studied
in [9, 10]; and related analytic representations were studied in [11]. This work was extended
to SU(2) coherent states in [12]. In this paper we present the analogue of this work for
SU(1, 1) coherent states, i.e. we give resolutions of the identity in terms of line integrals
of SU(1,1) coherent states. We stress that this generalization §6h2) to SU (1, 1)
is highly non-trivial because of convergence difficulties in the latter case. We introduce
resolutions of the identity which can be used not in the full Hilbert space but in smaller
spaces which we explicitly describe. In this sense our resolutions of the identity are weaker
mathematical structures than the standard resolutions of the identity (which are valid in the
full Hilbert space without convergence difficulties).

In section 2 we introduce the complementary states which are auxiliary states for the
formulation of resolutions of the identity in terms of line integrals $if (1, 1) coherent
states. We show that, apart from being useful for this particular purpose, the complementary
states are also interesting in their own right. For example, they form an overcomplete
basis and fok < % (wherek is a parameter defined in section 2 which characterizes the
representation) there exists a resolution of the identity in terms of surface integrals of the
complementary states.

In section 3 we discuss our central point: resolutions of the identity in terms of contour
integrals ofSU (1, 1) coherent states. We define the spaces in which these resolutions of the
identity can be used carefully. In section 4 we show how an arbitrary state can be expanded
in terms of SU(1, 1) coherent states on a contour, and give several examples. In section 5
we apply these ideas in the context of squeezed states in quantum optics.

In section 6 we extend the resolutions of the identity into ‘forbidden regions’ of the
parameters, by regularizing the relevant divergent integrals. We conclude the paper in
section 7 with a discussion of our results.

2. SU(1, 1) coherent states and their complementary states

Let Ko, K, K_ be the generators of th&/ (1, 1) group satisfying the commutator relations
[Ko, K] = £K4 [K_, K,] = 2K,

®3)
C=K?=K§— 3(KiK_+K_Ky)

whereC = K? is the Casimir operator. The standard basis for the coadjoint representation
|k, n), is defined by the relations

K?|k,n) = k(k — )|k, n)

Kolk,n) = (k +n)lk, n)

12 (4)

K_lk,n) = [n(n+2k — D] |k, n — 1)

Kylk,n) =[(n + D(n +20] %k, n + 1) n=012..)

wherek is a real number characterizing the representation. kFe:'% 1, g ... we have

the so-called discrete series of representations. To each eigenvaluk(k — 1) of the
Casimir operatoiIC correspond two possible valugés= % + [%1 + c]l/z. The statgk, 0) is
annihilated by the operatdt_ and is therefore the state with the lowest weight. The states
|k, n) (with fixed k) are orthonormal:
[o¢]
(k,mlk,n) = 8. Z|k,n)(k,n| =1 m,n=0,1,2,..) (5
n=0
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and they span an infinite-dimensional Hilbert sp@fie
SU (1, 1) coherent states can be defined as

T(n+ 21<)T/2 ©)

k2) = A~ |2 Y dkom)z"k,n)  dkon) = [ nIT(2K)

n=0
where|z| < 1. An alternative equivalent definition is

lk,r,0, 1) = S(r, 0, )|k, 0) = exp(irk)|k, z)
S(r, 0,1 = exp|—3re K, + 1rd’K_} exp(irk.) 7
z = —tanh3r) exp(i(® — 1)).
The overlap of two of these states is
(k. zalk, z2) = (L= |22l X = 122 (X = z3z2) 7. ®)

For k > % we can write the following resolution of the identity [2—7] in terms of a
surface integral of the statek, z) over the unit diseD (|z| < 1):
2k —1 d’z
— | du(@) Ik, 2)(k, 2l = I du(@) = —.
T Jp (1-1z1?)

For later purposes we briefly prove this relation. We substitdte d %dt d¢, (where
z = +J/texpi¢) and O< ¢ < 1) in (9) and integrate over the angje to obtain

o0 F 2k 1
Z T +(;’)J;(2k)_ D [/O (1 —1)%*2 dt} In, k)(n, k| = I. (10)
n=0

It is known that forA > 0 andu > 0

©)

1
/ de XA Y1 —x)* =B, w) (11)
0
where
T ()
Bh, n) = ToT 0 (12)

is the Euler Beta function. In this way equation (9) is provedifor %

Fork < % the integral of (10) diverges (farnear to 1). In section 6 we shall regularize
the divergent integral and extend this to the case %

We now define the ‘complementary states’ which will be used in the next section for the
formation of resolutions of the identity that invol&/ (1, 1)-coherent states on contours
around the origin. They are defined as

{dtk, m) @Y}k, n)

NgE

Ik, z; com) = {K (k, z])} "

3
I
o

SN Md ke, my Yk (13)

NgE

(k,z; com = {K (k, |z])}~

||
o

n

{F(L 1; 2; Izl’z)}l/2

|z]

where ‘com’ in the notation indicates complementary states, @&hddenotes the
hypergeometric functions. Note that the normalization fa&t@iz|) converges only outside

K (k. 1zl) = 2l > 1
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the unit disc. So theSU (1, 1)-coherent states are defined inside the unit disc and their
complementary states outside the unit disc.
It can easily be seen that

_ 1
(k, 225 comik, z1) = {K (k, |z2D)} (1 = zal?)" :
2 — 121

Note that since;; is inside the unit disc angb is outside the unit disc, one h&g| < |z2].
This is needed because the overlap of these two states is expressed as a sum which converges
to the right-hand side only ifz1| < |z2].

We can also prove the following relation for the overlap of two complementary states:

|12122] F(L 1; 2k; (z225)7Y)

(14)

(k, z1; comk, z; com) = . 73 (15)
1% [F(L 1 2k; |21 72 F (L, 1; 2k; |z2|2) ]
In many formulae below it will be convenient to use the ‘analytic states’
(o8]
Ik, Z)anar= Y _ d(k,n)z" |k, n) (16)
n=0
= -1
Ik, 2; COManar = Y _{d(k, n)(z*)"**} "Ik, n). (17)

n=0
We call them analytic because their overlap with other statpés an analytical function
of z, in an appropriate region (equation (16) when usedgak, z)ana and equation (17)
when used agna(k, z; comlg)). These states are not normalized to 1, but they belong to
the Hilbert spaceH, if their normalization is finite.
We now prove the following resolution of the identity in terms of the complementary
states outside the unit dige*(|z| > 1) and for O< k < %:

sin 2w |k, z; COM) anal anafk, z; cOM|
= | & = I. 18
22 o © (212 — D ¢ (18)

In order to prove this, we substitut€éd= —(1/2:>)dr dg, (Wherez = exp(ig)/+/t and
0 <t < 1) in (18) and use the following integral representation of the Beta function:

tn+2k71
(1-02
This integral representation of(B+ 2k, 1 — 2k) holds only for O< k < % whereas for

% < k this integral diverges. Finally we use the following well-known identity for products
of Gamma functions

F(x)r(d—x) =

1
B(n+2k,1—2k):/ dr (19)
0

20
sinxw (20)

and prove equation (18). In section 6 we shall consider the %asek and regularize the
divergent integral.

3. Weak resolutions of the identity in terms of contour integrals ofSU(1, 1) coherent
states

In order to write a resolution of the identity in terms of contour integrals that involve both
the SU(1, 1) coherent states (defined inside the unit disc), and their complementary states
(defined outside the unit disc), we need to be able to use both of them in a small ring

Sl—enl4e)={l-€ <zl <l+e} (21)
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in the neighbourhood of the unit circle] = 1. In order to do this, we first point out that
if |f) is an arbitrary normalized state in the Hilbert spdfge

1f) =" fulk.n) dIflP=1 (22)
n=0 n=0
then the function
F@) = 1— [z (flk.2) =Y dk.n) fi2" (23)
n=0

defined initially within the unit disc, may be extended analytically if the expansion on the
right-hand side converges on a larger disc. For example, in the special case of gtates
which are superpositions of a finite number of statész), the sum appearing in (23) is
defined in the whole complex plane.

We call H;,(1+¢;1; A) (wheree; > 0) the subset of the Hilbert spaég which contains
all the stateg f) for which the sum (23) converges in the digt < 1+ €;. The A in the
notation indicates the sum of (23). Itis clear thatif< €] then theH, (1+¢€;; A) is a subset
of Hy(1+ €;1; A). An example of states that belong in th&(1 + ¢1; A) are theSU (1, 1)
coherent statefk, zo) with |zo| < (1+ €1)~%. This example shows that forfexed non-zero
value ofe;, the spaced; (1+€1; A) is not dense inH,. Indeed allSU (1, 1) coherent states
|k, zo) With 1 > |zg] > (1 + €1)~* do not belong to the closure of the spadg(1 + €1; A).
However, in the limite; — 0 the H,(1+ €1; A) becomes the Hilbert spadé,.

In an analogous way ifg) is an arbitrary normalized state

19) =Y ealkin) Y lgl?=1 (24)
n=0 n=0

then the quantity

8n
G(z) = K (k. |z|) (k. z. comig) = ; TR (25)
converges at least in the regiej > 1, and possibly in a larger region.

We call H,(1 — €2; B) ( wheree; > 0 ) the subset of the Hilbert spadé, which
contains all the statelg) for which (25) converges in the regidn| > 1 — ¢;. The B in
the notation indicates the sum of (25). It is clear thatif> €, then the Hi (1 — €;; B)
is a subset ofH; (1 — ¢2; B). An example of states that belong in tiig (1 — ¢,; B) are
the complementary staték, zo; com) with |zg] > (1 — €2) . This example shows that for
a fixed non-zerovalue of €5, the spaceH, (1 — ¢,; B) is not dense inH;. Indeed all the
complementary statds, zo; com) with 1 < |zo| < (1 — €2)~* do not belong to the closure
of the spaceH, (1 — ¢,; B). However, in the limite, — 0 the H; (1 — ¢,; B) becomes the
Hilbert spaceH;.

Now let |f) be an arbitrary state irH,(1 + €1; A) and |g) an arbitrary state in
Hi(1 — e3; B). If C is an anticlockwise contour around the origin within the ring
S(1 — €1, 1+ €) we can prove that

d _
) gz, (1~ 121K k. 12)(f k. 2) (k. z: comlg) = (flg)- (26)

Indeed, substitution of (23), (25) into (26) gives the relation

d > 0 .
b5 S Salsm) - @
n=0 s

m=0
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which is easily proved using the formula

dz "
= 2 s, 28
$ 3 o (29)

Therefore for bra states iff,(1+ ¢1; A), ket states infi, (1 — €3; B) and contours” in

the ring S(1 — €2, 1+ €7) we can rewrite (26) in the form of a resolution of the identity
d _
= (1— 12 *K &, IzDIk, 2) (k. 25 com| = . (29)
c 27'”

We call this a weak resolution of the identity because there is some restriction on the bra
and ket states that we can apply on the left and right of this identity. It is clear of course
thate; ande; can be arbitrarily small and in fact one of them can even be zero. All that we
need for the proof of (26) and (27) is a risgl — e,, 1+ €1) of finite width. Equation (29)

can also be written in terms of the analytic states of (16), (17) as

dz
ﬁ % |k, Z)anal analk, z; com| = Ii. (30)

The above formalism clearly defines the conditions under which our weak resolution of
the identity is valid.

4. Expansion of an arbitrary state in terms of SU(1, 1) coherent states on a contour

Using equation (29) we can express an arbitrary stajewithin H;(1 — ¢; B) as a
superposition offU (1, 1) coherent states on a contodrin the ring S(1 — €3, 1):

dz
g) = fc 5 8@k 2) (31)
with
2(@) = (L— 129 K &, 1z (k, z; comig)

= (1-129 76w

o0

—(1— 1P —k 8n ) 32
(1-1z1%) ;—d(k’n)zﬁl (32)
We consider several examples. The first one is the spata$ for which equations (31)
and (32) easily give

_ dz 2\ —k 1
|k, n) = 75; o (1-1z1%) W'k’d' (33)

Note that for the statel, n) the sum of (23) converges everywhere in the complex plane
(apart from the origin). Therefor€ can be any anticlockwise contour in the unit disc
around the origin. We can easily check that this result is correct, if we subsgfitutefrom
(6) in (33).

Another example is th6U (1, 1) coherent statek, zo) (|zo| < 1). Equations (31) and
(32) in conjuction with (14) give

dz /1—1z02\" 1
k,zo) = ¢ — k, 7). 34
k. 2ol fCZnI (1—|Z|2 Zo—ZI 2 (34)

In this case the sum of (25) converges onlyzif| < |z|. This leads to the conclusion that
the contourC should be in the ringg (1 — |zol, 1). Note that in this case the contoGrwill
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enclose the pole afy. It is easy to check that in this case the right-hand side of (34) is
indeed equal tgk, zg).

Another example is the complementary statészo; com) (|zo] > 1). Using
equation (15) in conjunction with (31) and (32) we find that

A fzol F(L1 2k (zzp)7Y)
¢ 2mi 223 [F(L, 1; 2k; |zo| 72)]Y/2

Ik, zo: COM) = (1—1z29) "k, 2).  (35)

In this case the sum of (25) converges onlyzifo| > 1. This leads to the conclusion that
the contourC should be in the ring(|zo| %, 1).

5. Application of the formalism to squeezed states

In this section we apply the above formalism to squeezed states. We consider the following
well-known realizations ofU (1, 1) generators with single boson operators:

K_ a® K, = iaTz Ko = (aaT —i—aTa) C= —1—361. (36)

Il
Nl=
ENI

In this casec = —1—36 corresponding t& = %1 andk = %. The correspondence between the
states|k, n) of (5) and the usual harmonic oscillator number eigenstates as follows:

I n) = |2n)

S n)=|2n+1). (37)

The Hilbert spaceHy,,4 is isomorphic to the even Fock subspace (i.e. the Fock subspace
spanned by the even number eigenstates)Hf)g is isomorphic to the odd Fock subspace.
Therefore the Hilbert space of the harmonic oscillator is isomorphic to the direct sum
Hy/q + Hza.

TheSU (1, 1) operators of (7) are in this case the squeezing operas@rsl, 1)-coherent
states are defined as

n;o 2n + 1! (38)
3/4 S on
%z}:(l—lzlz) / ZOWZ %, )

The states%,z) are squeezed vacua; and the stal%&) are the number eigenstat®)
squeezed.
The complementary states are definediet ;11 as

%1, Z; COTT]) 4v |Z| Z [(21’1)'] 1/2(2*)n+1 o et | 2

n=0

(%, z;com = {K (3, Iz])}

Z [(2n)']1/2 n+1 (2n]

[F(L1: L2}
|z]

1 {arcgin( 1 ) + (| |2 1)1/2}1/2 | | L
= - i — >
(22— 1)%/4 EVARS ‘

(39)

K(3.lz) =



9348 A Vourdas and A \fische

and fork = 2 as

’ln|

%, 2 COm) 41 |Z| Z [(211 + 1) l./Z(Z*)rH-l |2 + 1)
<%7 Z; Com| 47 |Z| _120 [(2”1 + 1)|]l/2 n+l< + 1|

{ (1 13 |_2)}1/2 (40)
K (3 12l) = Td

1 1N\
= W arcsin m |Z| > 1.

Let | f) be a normalized state in the harmonic oscillator Hilbert space:

= fulk.n) dSIfP=1 (41)
n=0 n=0

According to our terminology introduced earlier, we will say that this state belongs in the
direct sumHy/a(1 4+ €1; A) + Hz/a(1+ €35 A) if the sums

. > /@)
(L= 1)l z>=ZO i Ul
- 42
3/4 NV (2n + D! “ n “2
(1—1zP?) Z ST Ll

n=

converge for|z| < 1+ € and |z] < 1+ ¢;, correspondingly. We will also say thaf)
belongs in the direct surfl1,4(1 — €2; B) + Hza(1 — €5; B) if the sums

1 > 2'n! f;
K (G 15, 2 comlf) =} W

n=0 (43)

3 . 3 00 2’ln!f2n+l
K(Z, 1zD(2, z, 00m|f) = nZ:O [(2n + 1) V21

converge forz| > 1 —€; and|z| > 1 — €], correspondingly.

Now let | f) be a state inHi/ (1 + €1; A) + Hza(1+ €;; A) and |g) be a state in
Hy4(1 — €2; B) + H3a(1 — €5; B). If Cp is an anticlockwise contour around the origin
within the ringS(1—e1, 1+ ¢,) andCy is an anticlockwise contour around the origin within
the ring S(1 — €7, 1+ €5) we can prove that

d _
$ o @kl R G

& 7){z 25 comig)

dz

—+
CIZT[(

1B K G123,

z) (3. z; comlg) = (flg). (44)

Therefore for bra states iH1/4(1+¢€1; A) + Hza(1+€1; A), ket states inHya(1—e€2; B) +
H3/4(1 — €5; B) and contourCp in S(1 —€1,1+¢€) andCy in S(1 — €}, 1+ €,) we can
rewrite (44) in the form of a resolution of the identity
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dz

$ oo @1 K ()

o 27i

3.2)(3. z: com
- (1-1z13)" "k 3, 121)
¢, 27i 4
These results show how the general formalism developed earlier can be used in the context
of squeezed states in quantum optics.

3.2)(3, z; com| = . (45)

6. Extended resolutions of the identity: regularization of the divergent integrals

The resolution of the identity (9) is valid only far > % (because fok < % the integral
diverges); and the resolution of the identity (18) is valid only foe % (because fok > %

the integral diverges). In this section we regularize these divergent integrals and consider
the special cask = % by a limiting procedure.

This involves theSU (1, 1) coherent states and also the complementary states on the
circle |z] = 1. Although these states are not normalizable, in this paper we have carefully
defined how these states can be used by taking their overlap with states in appropriate spaces.
For theSU (1, 1) coherent states witly| = 1 the appropriate space 1% (1 + ¢; A) where
€ is any positive number; and for the complementary states wjth= 1 the appropriate
space isH; (1 — €; B) wheree is any positive number.

As an application of this formalism we now use these states on the ¢iicte 1 to
regularize the divergent integral (9) for< 1, and the divergent integral (18) far> 1.

6.1. Weak resolutions of the identity in terms of surface integrals of the SU(1, 1) coherent
states with O< k < 2

Fork < % the integral of (10) diverges (farnear to 1). However it can be regularized as
explained in [13, page 66] in the following way. Consider

1 P 1 1 1 1— "
d——-—=| dd ————— | d ————. 46
fo (1-0z* /o (1-nz* fo (1-nz* (40)
The regularization occurs when we formally use the relation
! 1 1
d ————=B(1,2k—1) = —— 47
/0 Q-1 ( ) 2k —1 (47)

for the first integral, fork < % [13]. This formula (fork < %) is to be understood as a
regularization relation rather than a standard integral. The second integral on the right-hand
side of (46) is convergent (a factgt — ¢) is in both the numerator and denominator and
simplifies). In this way we obtain

1 1 1 1 t . tnfl
/ dr "1 -2 =—— — f g =Lt
0 2k —1 0 a- t)l_Zk

1 n—1
= — — B 1 =B 1,2-1). (4
T ; (I +1,20)=B(n+1,2k—1). (48)

The last equality in (48) can be proved inductively. We have checked numerically that the
regularized integral in (48) is indeed equal to the Beta function.
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Using equation (48) and the integral

! 1" el (n+1)
lim dr = lim = 49
a%+08‘/0A (1—[)178 e—0 I'(e+n+1) ( )
we prove the following resolution of the identity for®k < %:
: o2z |k, 2)anal analk., z| d’z J(k, 2)
lim e —;+1—2k/——’=1. 50
e—>+0 /D T (1—|z]?)Le ( ) p 1w (1—|z]2)2%* k (50)
where
Tk, 2) = |k, 2/12]) g anedk- 2/121| = Ik, 2)anal anafk. 2. (51)

The two integrals in (50) correspond to the two integrals in (46). The operdtarz)
corresponds to the numeratdr— ") of the second integral on the right-hand side of (46).

It containsSU(1, 1) coherent states on the circle] = 1 (which corespond to the 1 in

the term(1 — ")), and play a crucial role in the regularization of the integral. Therefore
equation (50) is a weak resolution of the identity which can be used for states in a space
H;(1+ €; A) wheree is any positive number.

It is interesting to see what happens in the dase% because in this case tisé/ (1, 1)
coherent states become phase states (for a discussion on phase states from this point of
view see for example [7, 10]; for a general discussion on phase operators and phase states
see [14]). The resolution of the identity far= % can be obtained from (9) by taking the
limit k — % from above. Another way to obtain the resolution of the identityifes % is
to take the limitk — % from below in (50). In both cases we obtain the relation [10]

2, |1 1
/ B 2’ Z>anal ana(Z’ 2
p ™ (1—|z»)t

L= lim ¢
12 e—>+0

2, |1 1
INT 1 d°z 2’Z>anal ana(Z’Z
= lim — 12 tenaland
e—>+0 |Og(1/8) lz|<l-e T 1- |Z|

(52)
A different resolution of the identity for the case<0k < % was studied in [15].

6.2. Weak resolutions of the identity in terms of surface integrals of the complementary
states with k> 2

The integral in (19) diverges wheh > % (for t near 1). We first consider the region
% < k < 1 and regularize this integral by a modification of the procedure explained in [13]
in the following way:

1 n+2k—1 1 2%—1 1 211 _gn
/ dr t— — f dr t— _/ dr M
o (@A-=-n* Jo  A-n* Jo (1—n*

{21

n—1 1
=B(2k,1— 2k) — dt ——
( : ;/o (1-n&-1

n—1
=B(2k.1—2k) — Y "B(l + 2k, 2—2k)
=0

= B(n + 2k, 1— 2k). (53)
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The regularization occurs when we formally use the relation

1 tZk—l T
dt —— =B(2k,1-2%) = 54
/0 1-n% (2, ) sin 2w (54)
for the first integral in (53) which is divergent far > % The last equality in (53) can be
proved inductively.
Using equations (53) we prove the following resolution of the identity in case of
1 .

. d?z |k, z;co k,z;co sin 2 d?z J(k, z; com

lim 8/ _Z |k, z n»a;nalana{ Z m _ T[/ _Z ( 2Z 2) =1 (55)
e—>+0 Jp« T (Iz]? = D= y4 pr T (212 =D

where

J(k, z; com) = |k, z/|z]; com), . - tk, z/|z]; com| — |k, z; COM anal anafk, z; cOM.  (56)

Note that the operatoy (k, z; com) involves complementary states on the cirtle = 1,
which play a crucial role in the regularization of the integral. Therefore (55) is a weak
resolution of the identity which can be used for states in a sphct — ¢; B) wheree is
any positive number.

The resolution of the identity (55) fails for & k because the second integral becomes
divergent. As explained in [13] in these cases one has to make further regularizations of
the divergent integrals for each of the regions k < 3, 2 <k < 2, ... separately. The

2 2
casesk = % 1, % ... can be obtained by limiting procedures. We will not present this
explicitly here.

7. Conclusion

We have expanded previous work that used resolutions of the identity in terms of contour
integrals of coherent states [9-12] to th& (1, 1) case. This required the definition of both
SU(1, 1) coherent states and their complementary states in a ringzl< |z| < 1+ €;.

In equation (20) we have defined coherent states in a|djse 1+ €;. Their overlaps

with states in the full Hilbert space do not necessarily exist; but their overlaps with states
in a smaller space?;(1 + €;1; A) do exist. Similarly in equation (22) we have defined
complementary states fof| > 1 — €. Their overlaps with states in the full Hilbert space

do not necessarily exist; but their overlaps with states in a smaller gfade— «,; B) do

exist.

With this construction we have shown that for bra state&jnl +¢1; A) and ket states
in H,(1 — ¢5; B) the resolution of the identity (19), is well defined. Using this we have
expanded in (24) an arbitrary state in termsSéf (1, 1) coherent states. Several examples
of this have been presented and the whole formalism has been applied to squeezed states
in quantum optics.

The resolution of the identity (9) is known to be valid for- % As a byproduct of our
formalism we have regularized the divergent integral and we have given an extension of
this identity for 0< k < 3 in (50). In a similar way, equation (18) is valid for®k < 3;
but we have regularized the divergent integral and we gave an extension of thi&fér
in (55).

The set of all coherent states is highly overcomplete and it is practically very useful to
have resolutions of the identity in terms of smaller sets of coherent states. In this paper we
have studied resolutions of the identity in terms of contour integral$tofl, 1) coherent
states. The work can be applied to many areas, in particular in quantum optics (where a
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scheme for the experimental production of states similar to our complementary states has
recently been proposed in [16]).
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