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Abstract. Resolutions of the identity in terms of contour integrals that involveSU(1, 1)
coherent states and their ‘complementary states’, are derived. The complementary states are
auxiliary states that help in the formulation of these resolutions of the identity. Since the
SU(1, 1) coherent states are normalizable inside the unit disc and the complementary states are
normalizable outside the unit disc, enlargements of the Hilbert space are considered which
allow the construction of resolutions of the identity in terms of contour integrals in rings
1− ε2 < |z| < 1+ ε1. Several examples of our formalism are presented.

1. Introduction

Coherent states were first introduced for the Heisenberg–Weyl group and play an important
role in many branches of physics [1]. A modern definition of coherent states is to consider
displaced vacuum states

|α〉 ≡ D(α, α∗)|0〉 D(α, α∗) ≡ exp
(
αa† − α∗a) [a, a†] = I (1)

whereD(α, α∗) is the displacement operator. This definition can easily be generalized to
other Lie groups, for example theSU(2) and SU(1, 1) groups. SU(1, 1) coherent states
in particular which are of interest to us here, have been studied extensively both from a
mathematical (e.g., [2–7]), but also from a more applied point of view in connection with
parametric amplifiers [8].

An important property of coherent states is the resolution of the identity which for the
coherent states of the Heisenberg–Weyl group is∫

dµ(α) |α〉 〈α| = I dµ(α) = d2α

π
. (2)

It is known that the full set of coherent states (associated with any group) is highly
overcomplete, in the sense that there are much smaller subsets which are also overcomplete.
In order to exploit these smaller subsets practically we need to find resolutions of the identity
in terms of them. In practice this is not easy, and then even weaker structures, like for
example the concept of frames, are desirable.
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In this spirit, resolutions of the identity in terms of coherent states on a line were studied
in [9, 10]; and related analytic representations were studied in [11]. This work was extended
to SU(2) coherent states in [12]. In this paper we present the analogue of this work for
SU(1, 1) coherent states, i.e. we give resolutions of the identity in terms of line integrals
of SU(1, 1) coherent states. We stress that this generalization fromSU(2) to SU(1, 1)
is highly non-trivial because of convergence difficulties in the latter case. We introduce
resolutions of the identity which can be used not in the full Hilbert space but in smaller
spaces which we explicitly describe. In this sense our resolutions of the identity are weaker
mathematical structures than the standard resolutions of the identity (which are valid in the
full Hilbert space without convergence difficulties).

In section 2 we introduce the complementary states which are auxiliary states for the
formulation of resolutions of the identity in terms of line integrals ofSU(1, 1) coherent
states. We show that, apart from being useful for this particular purpose, the complementary
states are also interesting in their own right. For example, they form an overcomplete
basis and fork < 1

2 (wherek is a parameter defined in section 2 which characterizes the
representation) there exists a resolution of the identity in terms of surface integrals of the
complementary states.

In section 3 we discuss our central point: resolutions of the identity in terms of contour
integrals ofSU(1, 1) coherent states. We define the spaces in which these resolutions of the
identity can be used carefully. In section 4 we show how an arbitrary state can be expanded
in terms ofSU(1, 1) coherent states on a contour, and give several examples. In section 5
we apply these ideas in the context of squeezed states in quantum optics.

In section 6 we extend the resolutions of the identity into ‘forbidden regions’ of the
parameters, by regularizing the relevant divergent integrals. We conclude the paper in
section 7 with a discussion of our results.

2. SU(1, 1) coherent states and their complementary states

LetK0,K+,K− be the generators of theSU(1, 1) group satisfying the commutator relations

[K0,K±] = ±K± [K−,K+] = 2K0

C ≡ K2 = K2
0 − 1

2

(
K+K− +K−K+

) (3)

whereC ≡ K2 is the Casimir operator. The standard basis for the coadjoint representation
|k, n〉, is defined by the relations

K2|k, n〉 = k(k − 1)|k, n〉
K0|k, n〉 = (k + n)|k, n〉
K−|k, n〉 =

[
n(n+ 2k − 1)

]1/2|k, n− 1〉
K+|k, n〉 =

[
(n+ 1)(n+ 2k)

]1/2|k, n+ 1〉 (n = 0, 1, 2, . . .)

(4)

wherek is a real number characterizing the representation. Fork = 1
2, 1, 3

2, . . . we have
the so-called discrete series of representations. To each eigenvaluec = k(k − 1) of the
Casimir operatorC correspond two possible valuesk = 1

2 ±
[

1
4 + c

]1/2
. The state|k, 0〉 is

annihilated by the operatorK− and is therefore the state with the lowest weight. The states
|k, n〉 (with fixed k) are orthonormal:

〈k,m|k, n〉 = δm,n
∞∑
n=0

|k, n〉〈k, n| = Ik (m, n = 0, 1, 2, . . .) (5)
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and they span an infinite-dimensional Hilbert spaceHk.
SU(1, 1) coherent states can be defined as

|k, z〉 = (1− |z|2)k
∞∑
n=0

d(k, n)zn|k, n〉 d(k, n) =
[
0(n+ 2k)

n!0(2k)

]1/2

(6)

where|z| < 1. An alternative equivalent definition is

|k, r, θ, λ〉 = S(r, θ, λ)|k, 0〉 = exp
(
iλk
)|k, z〉

S(r, θ, λ) = exp
{− 1

2re
−iθK+ + 1

2re
iθK−

}
exp

(
iλKz

)
z = − tanh

(
1
2r
)

exp
(
i(θ − λ)). (7)

The overlap of two of these states is

〈k, z1|k, z2〉 = (1− |z1|2)k(1− |z2|2)k(1− z∗1z2)
−2k. (8)

For k > 1
2 we can write the following resolution of the identity [2–7] in terms of a

surface integral of the states|k, z〉 over the unit discD (|z| < 1):

2k − 1

π

∫
D

dµ(z) |k, z〉〈k, z| = Ik dµ(z) = d2z(
1− |z|2)2 . (9)

For later purposes we briefly prove this relation. We substitute d2z = 1
2dt dφ, (where

z = √t exp(iφ) and 0< t < 1) in (9) and integrate over the angleφ, to obtain
∞∑
n=0

0(n+ 2k)

0(n+ 1)0(2k − 1)

[∫ 1

0
tn(1− t)2k−2 dt

]
|n, k〉〈n, k| = Ik. (10)

It is known that forλ > 0 andµ > 0∫ 1

0
dx xλ−1(1− x)µ−1 = B(λ, µ) (11)

where

B(λ, µ) ≡ 0(λ)0(µ)

0(λ+ µ) (12)

is the Euler Beta function. In this way equation (9) is proved fork > 1
2.

For k < 1
2 the integral of (10) diverges (fort near to 1). In section 6 we shall regularize

the divergent integral and extend this to the casek < 1
2.

We now define the ‘complementary states’ which will be used in the next section for the
formation of resolutions of the identity that involveSU(1, 1)-coherent states on contours
around the origin. They are defined as

|k, z; com〉 = {K(k, |z|)}−1
∞∑
n=0

{
d(k, n)(z∗)n+1

}−1|k, n〉

〈k, z; com| = {K(k, |z|)}−1
∞∑
n=0

{
d(k, n)zn+1

}−1〈k, n|

K
(
k, |z|) = {

F
(
1, 1; 2k; |z|−2

)}1/2

|z| |z| > 1

(13)

where ‘com’ in the notation indicates complementary states, andF denotes the
hypergeometric functions. Note that the normalization factorK(|z|) converges only outside
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the unit disc. So theSU(1, 1)-coherent states are defined inside the unit disc and their
complementary states outside the unit disc.

It can easily be seen that

〈k, z2; com|k, z1〉 =
{
K(k, |z2|)

}−1(
1− |z1|2

)k 1

z2− z1
. (14)

Note that sincez1 is inside the unit disc andz2 is outside the unit disc, one has|z1| < |z2|.
This is needed because the overlap of these two states is expressed as a sum which converges
to the right-hand side only if|z1| < |z2|.

We can also prove the following relation for the overlap of two complementary states:

〈k, z1; com|k, z2; com〉 = |z1z2|
z1z
∗
2

F
(
1, 1; 2k; (z1z

∗
2)
−1
)[

F(1, 1; 2k; |z1|−2)F (1, 1; 2k; |z2|−2)
]1/2 . (15)

In many formulae below it will be convenient to use the ‘analytic states’

|k, z〉anal=
∞∑
n=0

d(k, n)zn|k, n〉 (16)

|k, z; com〉anal=
∞∑
n=0

{
d(k, n)(z∗)n+1

}−1|k, n〉. (17)

We call them analytic because their overlap with other states|g〉 is an analytical function
of z, in an appropriate region (equation (16) when used as〈g|k, z〉anal and equation (17)
when used asanal〈k, z; com|g〉). These states are not normalized to 1, but they belong to
the Hilbert spaceHk if their normalization is finite.

We now prove the following resolution of the identity in terms of the complementary
states outside the unit discD∗(|z| > 1) and for 0< k < 1

2:

sin 2kπ

π2

∫
D∗

d2z
|k, z; com〉anal anal〈k, z; com|

(|z|2− 1)2k
= Ik. (18)

In order to prove this, we substitute d2z = −(1/2t2)dt dφ, (wherez = exp(iφ)/
√
t and

0< t < 1) in (18) and use the following integral representation of the Beta function:

B(n+ 2k, 1− 2k) =
∫ 1

0
dt

tn+2k−1

(1− t)2k . (19)

This integral representation of B(n + 2k, 1− 2k) holds only for 0< k < 1
2, whereas for

1
2 < k this integral diverges. Finally we use the following well-known identity for products
of Gamma functions

0(x)0(1− x) = π

sinxπ
(20)

and prove equation (18). In section 6 we shall consider the case1
2 < k and regularize the

divergent integral.

3. Weak resolutions of the identity in terms of contour integrals ofSU(1, 1) coherent
states

In order to write a resolution of the identity in terms of contour integrals that involve both
the SU(1, 1) coherent states (defined inside the unit disc), and their complementary states
(defined outside the unit disc), we need to be able to use both of them in a small ring

S
(
1− ε2, 1+ ε1

) = {1− ε2 < |z| < 1+ ε1
}

(21)
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in the neighbourhood of the unit circle|z| = 1. In order to do this, we first point out that
if |f 〉 is an arbitrary normalized state in the Hilbert spaceHk,

|f 〉 =
∞∑
n=0

fn|k, n〉
∞∑
n=0

|fn|2 = 1 (22)

then the function

F(z) ≡ (1− |z|2)−k〈f |k, z〉 = ∞∑
n=0

d(k, n)f ∗n z
n (23)

defined initially within the unit disc, may be extended analytically if the expansion on the
right-hand side converges on a larger disc. For example, in the special case of states|f 〉
which are superpositions of a finite number of states,|k, n〉, the sum appearing in (23) is
defined in the whole complex plane.

We callHk(1+ε1;A) (whereε1 > 0) the subset of the Hilbert spaceHk which contains
all the states|f 〉 for which the sum (23) converges in the disc|z| < 1+ ε1. TheA in the
notation indicates the sum of (23). It is clear that ifε1 < ε′1 then theHk(1+ε′1;A) is a subset
of Hk(1+ ε1;A). An example of states that belong in theHk(1+ ε1;A) are theSU(1, 1)
coherent states|k, z0〉 with |z0| < (1+ ε1)

−1. This example shows that for afixed non-zero
value ofε1, the spaceHk(1+ ε1;A) is not dense inHk. Indeed allSU(1, 1) coherent states
|k, z0〉 with 1> |z0| > (1+ ε1)

−1 do not belong to the closure of the spaceHk(1+ ε1;A).
However, in the limitε1→ 0 theHk(1+ ε1;A) becomes the Hilbert spaceHk.

In an analogous way if|g〉 is an arbitrary normalized state

|g〉 =
∞∑
n=0

gn|k, n〉
∞∑
n=0

|gn|2 = 1 (24)

then the quantity

G(z) ≡ K(k, |z|)〈k, z, com|g〉 =
∞∑
n=0

gn

d(k, n)zn+1
(25)

converges at least in the region|z| > 1, and possibly in a larger region.
We call Hk(1 − ε2;B) ( where ε2 > 0 ) the subset of the Hilbert spaceHk which

contains all the states|g〉 for which (25) converges in the region|z| > 1− ε2. TheB in
the notation indicates the sum of (25). It is clear that ifε′2 > ε2 then theHk(1− ε′2;B)
is a subset ofHk(1− ε2;B). An example of states that belong in theHk(1− ε2;B) are
the complementary states|k, z0; com〉 with |z0| > (1− ε2)

−1. This example shows that for
a fixed non-zerovalue of ε2, the spaceHk(1− ε2;B) is not dense inHk. Indeed all the
complementary states|k, z0; com〉 with 1 < |z0| < (1− ε2)

−1 do not belong to the closure
of the spaceHk(1− ε2;B). However, in the limitε2→ 0 theHk(1− ε2;B) becomes the
Hilbert spaceHk.

Now let |f 〉 be an arbitrary state inHk(1 + ε1;A) and |g〉 an arbitrary state in
Hk(1 − ε2;B). If C is an anticlockwise contour around the origin within the ring
S(1− ε1, 1+ ε2) we can prove that∮

C

dz

2π i

(
1− |z|2)−kK(k, |z|)〈f |k, z〉〈k, z; com|g〉 = 〈f |g〉. (26)

Indeed, substitution of (23), (25) into (26) gives the relation∮
C

dz

2π i

( ∞∑
n=0

d(k, n)f ∗n z
n

)( ∞∑
m=0

gm

d(k,m)zm+1

)
= 〈f |g〉 (27)
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which is easily proved using the formula∮
C

dz

2π i

zn

zm+1
= δnm. (28)

Therefore for bra states inHk(1+ ε1;A), ket states inHk(1− ε2;B) and contoursC in
the ringS(1− ε2, 1+ ε1) we can rewrite (26) in the form of a resolution of the identityIk:∮

C

dz

2π i

(
1− |z|2)−kK(k, |z|)|k, z〉〈k, z; com| = Ik. (29)

We call this a weak resolution of the identity because there is some restriction on the bra
and ket states that we can apply on the left and right of this identity. It is clear of course
thatε2 andε1 can be arbitrarily small and in fact one of them can even be zero. All that we
need for the proof of (26) and (27) is a ringS(1− ε2, 1+ ε1) of finite width. Equation (29)
can also be written in terms of the analytic states of (16), (17) as∮

C

dz

2π i
|k, z〉anal anal〈k, z; com| = Ik. (30)

The above formalism clearly defines the conditions under which our weak resolution of
the identity is valid.

4. Expansion of an arbitrary state in terms of SU(1, 1) coherent states on a contour

Using equation (29) we can express an arbitrary state|g〉 within Hk(1 − ε2;B) as a
superposition ofSU(1, 1) coherent states on a contourC in the ringS(1− ε2, 1):

|g〉 =
∮
C

dz

2π i
g(z)|k, z〉 (31)

with

g(z) = (1− |z|2)−kK(k, |z|)〈k, z; com|g〉

= (1− |z|2)−kG(z)
= (1− |z|2)−k ∞∑

n=0

gn

d(k, n)zn+1
. (32)

We consider several examples. The first one is the states|k, n〉 for which equations (31)
and (32) easily give

|k, n〉 =
∮
C

dz

2π i

(
1− |z|2)−k 1

d(k, n)zn+1
|k, z〉. (33)

Note that for the states|k, n〉 the sum of (23) converges everywhere in the complex plane
(apart from the origin). ThereforeC can be any anticlockwise contour in the unit disc
around the origin. We can easily check that this result is correct, if we substitute|k, z〉 from
(6) in (33).

Another example is theSU(1, 1) coherent states|k, z0〉 (|z0| < 1). Equations (31) and
(32) in conjuction with (14) give

|k, z0〉 =
∮
C

dz

2π i

(
1− |z0|2
1− |z|2

)k
1

z0− z |k, z〉. (34)

In this case the sum of (25) converges only if|z0| < |z|. This leads to the conclusion that
the contourC should be in the ringS(1− |z0|, 1). Note that in this case the contourC will
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enclose the pole atz0. It is easy to check that in this case the right-hand side of (34) is
indeed equal to|k, z0〉.

Another example is the complementary states|k, z0; com〉 (|z0| > 1). Using
equation (15) in conjunction with (31) and (32) we find that

|k, z0; com〉 =
∮
C

dz

2π i

|z0|
zz∗0

F
(
1, 1; 2k; (zz∗0)−1

)
[F(1, 1; 2k; |z0|−2)]1/2

(
1− |z|2)−k|k, z〉. (35)

In this case the sum of (25) converges only if|zz0| > 1. This leads to the conclusion that
the contourC should be in the ringS(|z0|−1, 1).

5. Application of the formalism to squeezed states

In this section we apply the above formalism to squeezed states. We consider the following
well-known realizations ofSU(1, 1) generators with single boson operators:

K− ≡ 1
2a

2 K+ ≡ 1
2a
†2 K0 ≡ 1

4

(
aa† + a†a) C = − 3

16I. (36)

In this casec = − 3
16 corresponding tok = 1

4 andk = 3
4. The correspondence between the

states|k, n〉 of (5) and the usual harmonic oscillator number eigenstates|n〉 is as follows:∣∣ 1
4, n

〉 ≡ |2n〉 ∣∣ 3
4, n

〉 ≡ |2n+ 1〉. (37)

The Hilbert spaceH1/4 is isomorphic to the even Fock subspace (i.e. the Fock subspace
spanned by the even number eigenstates); theH3/4 is isomorphic to the odd Fock subspace.
Therefore the Hilbert space of the harmonic oscillator is isomorphic to the direct sum
H1/4+H3/4.

TheSU(1, 1) operators of (7) are in this case the squeezing operators.SU(1, 1)-coherent
states are defined as∣∣ 1

4, z
〉 = (1− |z|2)1/4

∞∑
n=0

√
(2n)!

2nn!
zn
∣∣ 1

4, n
〉
,

∣∣ 3
4, z

〉 = (1− |z|2)3/4
∞∑
n=0

√
(2n+ 1)!

2nn!
zn
∣∣ 3

4, n
〉
.

(38)

The states| 14, z〉 are squeezed vacua; and the states| 34, z〉 are the number eigenstate|1〉
squeezed.

The complementary states are defined fork = 1
4 as

∣∣ 1
4, z; com

〉 = {K( 1
4, |z|

)}−1
∞∑
n=0

2nn!

[(2n)!] 1/2(z∗)n+1
|2n〉

〈
1
4, z; com

∣∣ = {K( 1
4, |z|

)}−1
∞∑
n=0

2nn!

[(2n)!] 1/2zn+1
〈2n|

K
(

1
4, |z|

) = {
F
(
1, 1; 1

2; |z|−2
)}1/2

|z|

= 1

(|z|2− 1)3/4

{
arcsin

(
1

|z|
)
+ (|z|2− 1

)1/2
}1/2

|z| > 1

(39)
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and fork = 3
4 as

∣∣ 3
4, z; com

〉 = {K( 3
4, |z|

)}−1
∞∑
n=0

2nn!

[(2n+ 1)!] 1/2(z∗)n+1
|2n+ 1〉

〈
3
4, z; com

∣∣ = {K( 3
4, |z|

)}−1
∞∑
n=0

2nn!

[(2n+ 1)!] 1/2zn+1
〈2n+ 1|

K
(

3
4, |z|

) = {
F
(
1, 1; 3

2; |z|−2
)}1/2

|z|

= 1

(|z|2− 1)1/4

[
arcsin

(
1

|z|
)]1/2

|z| > 1.

(40)

Let |f 〉 be a normalized state in the harmonic oscillator Hilbert space:

|f 〉 =
∞∑
n=0

fn|k, n〉
∞∑
n=0

|fn|2 = 1. (41)

According to our terminology introduced earlier, we will say that this state belongs in the
direct sumH1/4(1+ ε1;A)+H3/4(1+ ε′1;A) if the sums

(
1− |z|2)−1/4〈

f
∣∣ 1

4, z
〉 = ∞∑

n=0

√
(2n)!

2nn!
[f2n]

∗zn

(
1− |z|2)−3/4〈

f
∣∣ 3

4, z
〉 = ∞∑

n=0

√
(2n+ 1)!

2nn!
[f2n+1]∗zn

(42)

converge for|z| < 1+ ε1 and |z| < 1+ ε′1, correspondingly. We will also say that|f 〉
belongs in the direct sumH1/4(1− ε2;B)+H3/4(1− ε′2;B) if the sums

K(
1

4
, |z|)〈 14, z, com

∣∣f 〉 = ∞∑
n=0

2nn!f2n

[(2n)!] 1/2zn+1

K(
3

4
, |z|)〈 34, z, com

∣∣f 〉 = ∞∑
n=0

2nn!f2n+1

[(2n+ 1)!] 1/2zn+1

(43)

converge for|z| > 1− ε1 and |z| > 1− ε′1, correspondingly.
Now let |f 〉 be a state inH1/4(1 + ε1;A) + H3/4(1 + ε′1;A) and |g〉 be a state in

H1/4(1− ε2;B) + H3/4(1− ε′2;B). If C0 is an anticlockwise contour around the origin
within the ringS(1−ε1, 1+ε2) andC1 is an anticlockwise contour around the origin within
the ringS(1− ε′1, 1+ ε′2) we can prove that∮
C0

dz

2π i

(
1− |z|2)−1/4

K
(

1
4, |z|

)〈
f
∣∣ 1

4, z
〉 〈

1
4, z; com

∣∣g〉
+
∮
C1

dz

2π i

(
1− |z|2)− 3

4K
(

3
4, |z|

)〈
f
∣∣ 3

4, z
〉 〈

3
4, z; com

∣∣g〉 = 〈f |g〉. (44)

Therefore for bra states inH1/4(1+ ε1;A)+H3/4(1+ ε′1;A), ket states inH1/4(1− ε2;B)+
H3/4(1− ε′2;B) and contoursC0 in S(1− ε1, 1+ ε2) andC1 in S(1− ε′1, 1+ ε′2) we can
rewrite (44) in the form of a resolution of the identity
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C0

dz

2π i

(
1− |z|2)−1/4

K
(

1
4, |z|

)∣∣ 1
4, z

〉 〈
1
4, z; com

∣∣
+
∮
C1

dz

2π i

(
1− |z|2)−3/4

K
(

3
4, |z|

)∣∣ 3
4, z

〉 〈
3
4, z; com

∣∣ = Ik. (45)

These results show how the general formalism developed earlier can be used in the context
of squeezed states in quantum optics.

6. Extended resolutions of the identity: regularization of the divergent integrals

The resolution of the identity (9) is valid only fork > 1
2 (because fork < 1

2 the integral
diverges); and the resolution of the identity (18) is valid only fork < 1

2 (because fork > 1
2

the integral diverges). In this section we regularize these divergent integrals and consider
the special casek = 1

2 by a limiting procedure.
This involves theSU(1, 1) coherent states and also the complementary states on the

circle |z| = 1. Although these states are not normalizable, in this paper we have carefully
defined how these states can be used by taking their overlap with states in appropriate spaces.
For theSU(1, 1) coherent states with|z| = 1 the appropriate space isHk(1+ ε;A) where
ε is any positive number; and for the complementary states with|z| = 1 the appropriate
space isHk(1− ε;B) whereε is any positive number.

As an application of this formalism we now use these states on the circle|z| = 1 to
regularize the divergent integral (9) fork < 1

2, and the divergent integral (18) fork > 1
2.

6.1. Weak resolutions of the identity in terms of surface integrals of the SU(1, 1) coherent
states with 0< k< 1

2

For k < 1
2 the integral of (10) diverges (fort near to 1). However it can be regularized as

explained in [13, page 66] in the following way. Consider∫ 1

0
dt

tn

(1− t)2−2k
=
∫ 1

0
dt

1

(1− t)2−2k
−
∫ 1

0
dt

1− tn
(1− t)2−2k

. (46)

The regularization occurs when we formally use the relation∫ 1

0
dt

1

(1− t)2−2k
= B(1, 2k − 1) = 1

2k − 1
(47)

for the first integral, fork < 1
2 [13]. This formula (fork < 1

2) is to be understood as a
regularization relation rather than a standard integral. The second integral on the right-hand
side of (46) is convergent (a factor(1− t) is in both the numerator and denominator and
simplifies). In this way we obtain∫ 1

0
dt tn(1− t)2k−2 = 1

2k − 1
−
∫ 1

0
dt

1+ t + · · · + tn−1

(1− t)1−2k

= 1

2k − 1
−

n−1∑
l=0

B(l + 1, 2k) = B(n+ 1, 2k − 1). (48)

The last equality in (48) can be proved inductively. We have checked numerically that the
regularized integral in (48) is indeed equal to the Beta function.
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Using equation (48) and the integral

lim
ε→+0

ε

∫ 1

0
dt

tn

(1− t)1−ε = lim
ε→0

ε0(ε)0(n+ 1)

0(ε + n+ 1)
= 1 (49)

we prove the following resolution of the identity for 0< k < 1
2:

lim
ε→+0

ε

∫
D

d2z

π

|k, z〉anal anal〈k, z|
(1− |z|2)1−ε + (1− 2k)

∫
D

d2z

π

J (k, z)

(1− |z|2)2−2k
= Ik. (50)

where

J (k, z) = ∣∣k, z/|z|〉anal anal

〈
k, z/|z|∣∣− |k, z〉anal anal〈k, z|. (51)

The two integrals in (50) correspond to the two integrals in (46). The operatorJ (k, z)

corresponds to the numerator(1− tn) of the second integral on the right-hand side of (46).
It containsSU(1, 1) coherent states on the circle|z| = 1 (which corespond to the 1 in
the term(1− tn)), and play a crucial role in the regularization of the integral. Therefore
equation (50) is a weak resolution of the identity which can be used for states in a space
Hk(1+ ε;A) whereε is any positive number.

It is interesting to see what happens in the casek = 1
2 because in this case theSU(1, 1)

coherent states become phase states (for a discussion on phase states from this point of
view see for example [7, 10]; for a general discussion on phase operators and phase states
see [14]). The resolution of the identity fork = 1

2 can be obtained from (9) by taking the
limit k→ 1

2 from above. Another way to obtain the resolution of the identity fork = 1
2 is

to take the limitk→ 1
2 from below in (50). In both cases we obtain the relation [10]

I1/2 = lim
ε→+0

ε

∫
D

d2z

π

∣∣ 1
2, z

〉
anal anal

〈
1
2, z

∣∣
(1− |z|2)1−ε

= lim
ε→+0

1

log(1/ε)

∫
|z|61−ε

d2z

π

∣∣ 1
2, z

〉
anal anal

〈
1
2, z

∣∣
1− |z|2 . (52)

A different resolution of the identity for the case 0< k < 1
2 was studied in [15].

6.2. Weak resolutions of the identity in terms of surface integrals of the complementary
states with k> 1

2

The integral in (19) diverges whenk > 1
2 (for t near 1). We first consider the region

1
2 < k < 1 and regularize this integral by a modification of the procedure explained in [13]
in the following way:∫ 1

0
dt

tn+2k−1

(1− t)2k =
∫ 1

0
dt

t2k−1

(1− t)2k −
∫ 1

0
dt
t2k−1(1− tn)
(1− t)2k

= B(2k, 1− 2k)−
n−1∑
l=0

∫ 1

0
dt

t l+2k−1

(1− t)2k−1

= B(2k, 1− 2k)−
n−1∑
l=0

B(l + 2k, 2− 2k)

= B(n+ 2k, 1− 2k). (53)
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The regularization occurs when we formally use the relation∫ 1

0
dt

t2k−1

(1− t)2k = B(2k, 1− 2k) = π

sin 2kπ
(54)

for the first integral in (53) which is divergent fork > 1
2. The last equality in (53) can be

proved inductively.
Using equations (53) we prove the following resolution of the identity in case of

1
2 < k < 1:

lim
ε→+0

ε

∫
D∗

d2z

π

|k, z; com〉anal anal〈k, z; com|
(|z|2− 1)1−ε

− sin 2kπ

π

∫
D∗

d2z

π

J (k, z; com)

(|z|2− 1)2k
= Ik (55)

where

J (k, z; com) = ∣∣k, z/|z|; com
〉
anal anal

〈
k, z/|z|; com

∣∣− |k, z; com〉anal anal〈k, z; com|. (56)

Note that the operatorJ (k, z; com) involves complementary states on the circle|z| = 1,
which play a crucial role in the regularization of the integral. Therefore (55) is a weak
resolution of the identity which can be used for states in a spaceHk(1− ε;B) whereε is
any positive number.

The resolution of the identity (55) fails for 1< k because the second integral becomes
divergent. As explained in [13] in these cases one has to make further regularizations of
the divergent integrals for each of the regions 1< k < 3

2,
3
2 < k < 2, . . . separately. The

casesk = 1
2, 1, 3

2, . . . can be obtained by limiting procedures. We will not present this
explicitly here.

7. Conclusion

We have expanded previous work that used resolutions of the identity in terms of contour
integrals of coherent states [9–12] to theSU(1, 1) case. This required the definition of both
SU(1, 1) coherent states and their complementary states in a ring 1− ε2 < |z| < 1+ ε1.
In equation (20) we have defined coherent states in a disc|z| < 1+ ε1. Their overlaps
with states in the full Hilbert space do not necessarily exist; but their overlaps with states
in a smaller spaceHk(1 + ε1;A) do exist. Similarly in equation (22) we have defined
complementary states for|z| > 1− ε2. Their overlaps with states in the full Hilbert space
do not necessarily exist; but their overlaps with states in a smaller spaceHk(1− ε2;B) do
exist.

With this construction we have shown that for bra states inHk(1+ ε1;A) and ket states
in Hk(1− ε2;B) the resolution of the identity (19), is well defined. Using this we have
expanded in (24) an arbitrary state in terms ofSU(1, 1) coherent states. Several examples
of this have been presented and the whole formalism has been applied to squeezed states
in quantum optics.

The resolution of the identity (9) is known to be valid fork > 1
2. As a byproduct of our

formalism we have regularized the divergent integral and we have given an extension of
this identity for 0< k < 1

2 in (50). In a similar way, equation (18) is valid for 0< k < 1
2;

but we have regularized the divergent integral and we gave an extension of this fork > 1
2

in (55).
The set of all coherent states is highly overcomplete and it is practically very useful to

have resolutions of the identity in terms of smaller sets of coherent states. In this paper we
have studied resolutions of the identity in terms of contour integrals ofSU(1, 1) coherent
states. The work can be applied to many areas, in particular in quantum optics (where a
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scheme for the experimental production of states similar to our complementary states has
recently been proposed in [16]).
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